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• Latest generation of high power battery cells are often comprised of multiple 
alternating layers of anode, cathode, separator and electrolyte

• Macroscopically, battery cores represent an orthotropic material subject to a 
time variant heat source

• Safety and performance considerations place a premium on packaging design 
and installation thermal maintenance

• SAIC has developed a numerical solver tool to evaluate thermal performance 
of packaging alternatives that will:

– Run rapidly (avoiding costly finite element simulations)
– Evaluate multiple geometries (prismatic, cylindrical, annular cell arrangements)
– Provide flexibility for multiple configurations (air or liquid cooling)
– Support steady-state and transient solutions
– Quantify predictive uncertainty

• Allows for internal cell temperature prediction where instrumentation is 
difficult, at best

Overview
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Cartesian Steady-State Solver
for Prismatic Battery Cells

 

• Solver predicts temperature response within the battery core based upon user 
supplied input of geometry, cell properties, boundary conditions and heating rate

• User can select mesh refinement and degree of simulation precision
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• Solves for temperature profiles as a function of 
coolant temperature, heating rate, effective 
boundary conditions and cell properties

• The solution solves for temperature response with 
effective convective boundary conditions along all 
six faces of the cell core utilizing boundary 
conditions of the third kind

• Similar forms exist for cylindrical cells
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Cartesian Solver 
for Prismatic Battery Cells

 

Battery
Core
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Cartesian Steady-State Solver 
for Prismatic Battery Cells

Problem Specifications

Effective Heat Transfer Coefficients
Battery Core Properties

Battery Dimensions Geometry
Depiction

Dimensionless Temperature Profiles
T=f(x/L1, y/L2) 

at z/L3=(0.0, 0.1, 0.2, 0.3, 0.4, 0.5)

Core Temperature Statistics

Temperature Extrema and Locations

Energy Balance Solution Check

Solution Location Monitor

Core Face Values
Number of Eigenvalues

(per coordinate direction)
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• Uniform heat transfer coefficients
– Note increased gradients in x-direction due to 

orthotropic properties

• Adiabatic conditions along x=0 face 

• Adiabatic conditions along y=0 face 

• Adiabatic conditions along x=0 & y=0 face 

 

 

 

 

Results of Several Baseline 
Verification Simulations
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Solver Example – Prismatic 
Cells Between Liquid Coldplates

• A generic prismatic cell (15×10×1 cm) with sandwiched between cold plates –
aluminum interstitial plates act as cooling fins for cell lateral surfaces

• Effective heat transfer coefficients estimated through analogous thermal circuits
• Similar approach used for y-direction effective heat transfer coefficients
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Monte Carlo Simulation Tool

• To quantify uncertainty, a Monte 
Carlo simulation tool has been 
developed

• User selects distribution type 
and parameters

• Currently supports:
– Gaussian distributions
– Log-normal distributions
– Uniform distributions

• User tool has distribution 
samples to aid user identification

• User selects number of Monte 
Carlo samples to simulate

 

Monte Carlo Simulation
Distribution Parameters Input Screen
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• Monte Carlo simulation runs multiple 
simulations using random sampling from 
defined variable distributions

• Simulations run rapidly – 1000 samples 
runs in a matter of minutes on a laptop

• Allows for rapid evaluation of uncertainty
– Material properties
– Heating rate
– Boundary conditions

• Solver plots battery cell maximum, 
minimum and average temperature

Monte Carlo Simulation Results

 

Input Property Distributions
 

Monte Carlo Simulation Results
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• The solver post-processes the Monte Carlo simulation results to give: 
– Distributions for the minimum, average and maximum core temperatures
– Heat Dissipation Rate (HDR) distribution
– Parameters of those distributions (mean and standard deviation)

• Heat Dissipation Rate (HDR) is a measure of the package cooling effectiveness 
and is defined as:

 

 

Monte Carlo Simulation Results

Distribution
Parameters
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• Heat Dissipation Rate (HDR) can be used to quantify the expected temperature 
difference from the cell to the coolant as a function of heating rate

• HDR leads to predictive of maximum 
and minimum core temperatures as a 
function of heating rate
with uncertainty bounds (±3σ)

• This illustrates best- and worst-case
cooling scenarios for this particular packaging design

• For example, at a 30°C coolant temperature and a 15W cell heat load
– ΔTmax (Cell max temperature – Coolant Temperature) = 27 C
– Worst-case maximum core temperature is predicted to be 48 < Tmax < 57°C.

 

Cell Heating Rate (W)

Temperature
Difference
to Coolant

(°C)

Cell Heating Rate (W)

Temperature
Difference
to Coolant

(°C)

Utilizing Results
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Cartesian Transient Solver for 
Prismatic Battery Cells

• Allows for transient simulation of time-variant heat loads
• Heat loads can be user defined or uploaded from tab-delimited files
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• Results of a step change in heating from initial conditions

• Identifies battery packaging concept time constant, worst case loading 
expectations and recovery time

Transient Results
Step Discharge Case

 

 

Cell Heating Rate

Battery Core Temperature Response
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Transient Results
Load Leveling Case

• Load-leveling presents a challenging thermal demand

• This case represents the temperature response to repetitive cycles of 60 sec 
discharge (100A) and 120 sec charge (50A)

 

 

Cell Heating Rate

Battery Core Temperature Response
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Transient Results
Driving Scenario Case

• Realistic driving scenarios imposed on a battery used for mobility assist

• Profiles typically show extensive non-uniformity

 

 
Cell Heating Rate

Battery Core Temperature Response
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Wrap Up

• Thermal solver predicts internal battery core temperature response

• Steady-state and transient applications

• Different geometries supported – prismatic, cylindrical, annular

• Monte Carlo simulator included to quantify uncertainty

• Several future developments are envisioned:
– Link to battery performance tool (electrical model)
– User tools to support boundary condition estimation
– Inclusion of transient coolant temperatures
– Temperature dependent property effects
– External package thermal inertia effects

• Questions / Comments / Feedback
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